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ATSTRAGT: For most cablea useful in counting work, attemuation below approxipately
1000 me is due mainly to skin-effect loases and varles as the square root of fre-
quency. For such cables the step-function response has a rige time that varies

as the equare of the attermatlon at a given frequency. Curves are given to ald

1n the salpction of cables for transmitting nanosecond pulses,

S7EP FURCTION RESPONSE: Mathematically ideal, losslesa coaxial cables can be shown
to transmit electrieal pulses in the TEM mode without attenuation or distortion.
However, all physically reslizable cables have losses, the magnitude of which changes
with frequency. FPulses transmitted through such cables suffer boih attenuation

and distortion, By means of the laplace transform, the nature of the distortiom

can be calculated if the attenuation and phase-shift are known at all frequencles.

In most of tho cables presently useful in counting work, skin effect losses in the
sonductors are the predominate lossea below about 1000 mc. Skin-effect losses pro-
duce an attenusntion whose magnitude in decibels varies as the square-root of fre-
quoncy. 1t 1a shown in the appendix that this results in a step functlon reaponse

of: ’l
b
Equt —Ein (1 = exf vﬁ]
wnere

Eout "T-:nlt-ng_i at distance f from input end of semi-infinitely long uwniform
cable,” at time t (seconds)

Eyy =—anplitude of step of voltage applied to input of cable at tlme +t =0
.»( =distance from input end-feet

=constant for the particulsr Gﬂhlﬂ.in question

=1.45x 1078 4 - feat™t sect

A =gttemuation of cable at 1000 me - db/100 feet {attenuation flgures
for coaxial esbles are commonly guoted in these unita)

erf =—earror r'uu:nl:ﬂ.j.w':u:l.2

" = 4ransit tizme of cable defined as the value of t at which the voltage
att first begins to (considering only the step functlon cccur-
ring at t =0, of course

1, ¥ith negligible error in most cases Eout can be taken as the response at iho
receiving end of & cable of length 1., terminated in a resiator equal to its
characteristic impedance.

i = S

2. Aa definsd in Referemca 1, p 256, 9k ) = s £
=

El g
N = s | [’ l,-l-._\-l" -"ll.r" =5 'J_q “;\-LL|E1E|=-‘
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Fig. 1 - This illustrates the space relation betveen Ein and Equt s

Figure 1 may elarify the nomenclature involved in this relation.

A normalized curve of Enutijin 1s shown in Figure 2. The sbscissa is plotted
in units of T, the 0-50% rise time. In other words, Tp is the value of (t-T )
at which Rgut?'f:in = 1/2. Por cables whose attenuation varies as the one-half pover
of frequency, it is convenient to caleulate Ty as:

: 2
To = .56 % 10716 2252 cocands { t[o%] Y

It is evident that T, varles directly as the square: of the total attenuation of :

the length of cable. Cables of different sizes or types may therefore be compared C
for rise time in temms of A, their attenustion at 1000 mo. Figures of A for most
cormercially aveilable eables are given in CC2-2.

In cases where: a) the attenuation is known only at a frequency other than
1000 me; or b) the frequency dependence of attenuetion departs somewhat from the
1/2 pover law (say, where of = constant. 1", in the region 0.k < n<0.7) T, may be
cinlculated:

To_ .56 x 10-P otz £
: 4

where
& = attenuation of cable at frequency f - db/100 feet
f = freguency - cycleg

In case a) the nomogram of Sec. VII C02-2 may be useful. In case b), it has been
empirieally determined that reasonably amccursite results are obtained where £ is
the frequency et which the totel attemmtion (i.e.,olp £ /100) of the cable is 6
decibels. Substituting of £ /100 = 6 db into the above Elves the useful relation

T T 1/6r
wWhers ® 5

fgs = frequency at which the total attenuation of the length of cable in ques-o
tion is 6 db. :
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The timea to reach other percentages of the inpui:. atep amplitude are given in Table I.

M
i TABLE I
RISE TIME COKVERSIOM FACTORS
Q0 toX ¥ rise tige
X Ts
10 0.17
20 0.28
50 1.0
70 3.1
80 7.3
90 29,
95 110,
The 10 to 904 rise time is (28,85-0.17) To = 28,68 T,.
il

IMFULSE RESFONSE: The response to an impulse (dolta function), of a cable having
declbel atteruation proportional to the square-root of frequency, may be obtalned
ty differentiating Eout above, The mathematical stops are indicated in the appen-
dix, and the resulta show that, as with the step~function ragponse, the impulse
response can be represented by a univeraal curve, that of Flgure 3. The area under
this curve (coulombs) is conserved as the pulse travels along the cable, Thus the
peak aoplitude of the response varies as -b'k.[‘ A » and the time between,
for exumple, the half-amplitude points, varies as B2Z2, The peak amplitude ceeurs
Et: Cl.lﬁE Tu. .

RESFONSE TO OTHER PULSE SHAFES: It will be noted that, since the rise time T, is
proportlonal to ,Ez y 1f two equal lengths of a given type of cable ars cascaded,

the rise time of the combination is four times the riss tima of elther length alcne.
This 18 in contrast to the well-known case of amplifiers of "Caussian”™ frequency
responsed, in which the rise time varies ss the square root of the number of idonti-
cal sections, For this reason, and also because the charmcteristie step-or inmpulse-
function responses of cables ard of "Gaussisn" amplifiera are so differesnt, the
Tule-of-thunb that the over=all rise time= ,/5um of squares of individusl rise times
1a not applicable elther with cables alone, or where cables are combined with
Gaussian elaments, Instead, the overall response of a system with cables and other
elemonta may be obtained graphleally or with the standard convolution .1.11‘!‘uang:.-n_'i.ﬂ‘E‘mil
using edther the step-or impulse-function response of the cables,

31- AFPE“:L{.I'
4« Roference 1, pp 112-120,
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HRECTANGULAR PULSE RESFONSE, CLIPPING LINES: The respense of a cable to a rectanpular
julse of a duration T can be found by a simple application of superposition. The
rectangular pulse is considered to consist of & positive step-function at ¢ =0,
followed by a negative step-function at t = T, The anplitude reduction of such

a [ulse as a function of the distance it has traveled along the salected coaxial
cobles is shown in Figures 5, & and 7, Figure 5 includes a eurvae showing the time-
stratching of the output pulse with respect to the input pulse, By suitably changing
the length scale in the way indicated on the figure, the two curves of Figure 5

can be applied to any pulse duration and any cable for which attenuation varies

as the square root of frequency, The amount of time-stretching of any output pulse
can therefore be determined from Figure 5 by knowing the value E_,4/Ein for the
pulse, where Eg,¢ is the peak amplitude of the output pulse, and Ein is the ampli-
tude of the input pulse,

The relative merits of various coaxial cables as conductors of pulses from
multiplier phototubes or other current penerators can be estimated from the curves
of Fipure & which are geplﬂtted from FiEure 5. Use flgure 6a for pulses of T— 10"
second; 6b for T = 1077; ¢ for T = 10740,  dNote that the input is g rectangular
current pulse of 1 smpere amplitude, A%t the input end of the cable, therefore,

Lthe voltage amplitude of the rectan; ular pulsze ia Zg volta, where Z; ia the charac-
teristlc impedance of ths line. The curves show, for example, that for an input
current pulse of T = 10° second, the peak voltage of the output pulse at the end
of a 75 foot run of KRG 114 would ba the sane as that at the output end of a 75 foot
mun of RG &3, even though the voltage developed at the input end of the RG 11z
would be 185/125 times the voltage at the input of the RG 63,

In Figure 7 are shown some specifie output pulse shapes topether with the
lengths of commonly used cables that Elve the correaponding output pulse shape for
an input pulse of T = 107 second. These pulse shapes were detarmined from Figure 2

in the way mentioned above,

The curves of Figures 5, 6 and 7 also apply? to ¢lipping lines if the input
is a step-function and T= 2 timeg the electrieal length of the clipping line,
This i3 true whether the clipping line is located at the input or output end of
the transmission 1ine. The minimum 0-100% rise-time of a clipped pulse is 0,15 Toe
Clipping lines of electrical length less than 0.075 Ty will not decrease the rise-
time, tut will only decrease the amplitude of the output pulse,

The curves and data are intended to present the properties of the coaxial cables,
and therefore do not include the effect of gquantities that depend on the way in
which the cables are used, Examples of such quantities are the rise-time of multi-

data also do not take into aceount the inevitable small variations of characteriatie
impadance along the line. These impedance variaticns will generally degrade the
rise-time of the putput pulse by refleeting portions of the faster rising parts of
the pulse beilng transmltted,

7. Provided the elipping line is short encugh that 1ts attemation may be neglected,



ce2-1 (5)

EXFENIMENTAL VERIFICATION: Photograpks of the responses of several cable types to
™y step-function inputs are shown in Figure 8. Theee photographe vers all taken from
displays on a DuMont K1OY6 cathode ray tube connected as shown 1n the block diagram

of Figure 8. Figure fa ghows the step from the pulse generator delayed only by

2% nencseconds of cable {ingerted at A-A 1n Figure 9. Tne rige time of the pul se
generntor-gscilloscope combination fs about .45 nanosecond, and therefore obscures
the shape of the leading edge of the waveform of some of the better cables. The

typical 1 - erf shape is plainly seen in Figure 8f, for RG 63.
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Flg. 2. BStep-function response of transmissiocn lines for which decibel attenu-
ation varies as the square root of frequency. The time T, 1s defined as the
interval measured from the atart of the output pulse to the point at vhich
! Eout = 0.5 E{n+ To depends on the iransmissicn line parameters; the relation
for coaxial structures with negligible dlelectric loss s given in the figure,
In Fig. b, Ty is plotted as & function of cable type and length.
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Fig. 3. Delta-function response of transmission lines for which attenuation varies
ag the equare-root of freguency. A given in the text, A is the attenuation in
db/100 feet at 1000 mc, £ is the cable length in feet, and D {s the volt-second
product of the input delta function. This curve ia the time derivative of the
curve of Flg. 2. L

€

o3 L

SECONDS fﬂ.-—\.ﬂ

Q 20 J0 SO 100

CABLE LENGTH - FFET

Fig. k. calculated variation of Ty witn catle length for typical coaxial cables.
To obtain the values of Tp for otrer cable types see CC2-2.
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APPENDIX: A brief derivation of the cable responses described in the
previous section is presented. The derivation follows that gEiven in
Reference 2. Another derivation is given in Reference 3.

The two important sources of attenuation in coaxial cables are conduc -
tor losses and dielectric losses, Examination of the equations for cal-
culating these two losses, as given in CC2-2 Sec. VIll, shows that con-
ductor losses (skin-effect losses) vary as the square root of the frequency,
ind are functions of the cable Z_ and diameter, while dielectric losses of
cables having solid dielectric vary directly with frequency, and are inde-
pendent of cable diameter and impedance. This is shown in Fig. 10. Note
that bielow ~~ 1000 Mc for RG 8, and below ~ 4000 Mc for Styrofoam,
conductor losses predominate.

Because of the skin effect, the penetration of current into the conductors
of epaxial cables decreases as the frequency increases, This results in
increased conductor resistance because of the smaller useful cross section
of the conducter, The distributed inductance of the cable therehy also
changes. The total distributed inductance, L, may be thought of as existing
in two parts: (a) that represented by magnetic flux in the dielectric, L,;

(B) that represented by flux in the conductors, L. s the current penetration
decreases, L, likewise decreases, and it is shéwn that L. is related to

the distributed conductor resistince, R, by Zn f L._E =R (apd R = ﬂnnstantxﬁ},
L‘l' of course, does not vary with I'raqm:m:y

The transfer function of a coaxial cable may be represented by

-lefw)l +ip (a) 2]

where
Enut = voltage at receiving end of cable of length £ ,
E., =Tveoltage at sending end of casle of length
a = attenuation of cable in nepers/unit length,
P = phase shift of cable in radians/unit length,
w = frequency in radians/second = 27 I,
The quantities a and p may be expressed in terms of the distributed

R, L, and C of the transmission line (the shunt conductance loss of the
dielectric is assumed negligible) as

ﬁ:u'JLC

and o= Rfazﬂ.

e
Ref. 4, p. 239.
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Thereflore a = bNw,

where Fe 1 1
h = St }:‘j(ﬁ % 5 fi'.rrf-ﬂ.

a constant for the cable,
= 1.45% 1070 A (see p. 1)
B n permeability of the conductor material,
¢ = conductivity of the conductor material,

D= inside diameter of outer conductor,

d = putside diameter of inner conductor.

-

The guantity P may be separated into twe parts by substituting L, + L, =

p= u"‘-.”l_.l + Lﬁl{j

Li
'E'*mNJI,]G {1+ % _rﬁ ) . since usually |...-'2 << Ll 3
1 ;

- Bl * p‘g i
where

By = wNI1yG,
and #

B, =w/2NC/L - L,
Subsiituting 7, # 'HilLl;G Ly = R/,

One obtains [iz = R;"EEH =a=bvw.

The term p, is independent of frequency and iz the phase constant that the
cable would have il the skin deplh were zero. The second term, B, is
the frequency-sensitive part of i, which arises because of the skin effect.
Substituting into the transfer [unclion equaltion,
-{a +jB) 1,
E:u:nut - Ein -
oo Vw4 joude | -juNL G-t

~one has Enul = Ein

L
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Since the velocity of propagation along a cable is the inverse of the
product of distributed capacity and inductance, the term £ LG is the
transit time, 7, through the cable of length £ at frequencies at which the
skin depth is essentially zero,

E = E E—b"d.'!ju i E'—ju'r :
out in
The Laplace transform may be obtained formally by substituting the Laplace
variable, s, for jw;

_ -bN 251 -8 T
El:-ut () = Ein (sie = ?

Lt Einl{s] = lfs, a step function of amplitude Ei.n‘ The inverse transform
{or Enut“} is

e
st “:'EEin“ = \J"m}‘

This function is plotted in Fig. 2 for E..=1.

The function 1 - erf | ) is also obtained as the solution to certain
problems in diffusion and heat transfer, and is also the step-function response
of a distributed RC or LR transmission line. It might also be mentioned
that practically it is difficult to determine 7, the time at which the response
begins, because its slope changes slowly at first.

The response to a delta function of volt-second product, D, may be
obtained by letting Einla} =D, or by differentiating E .tit): The result is

& 2
; 1 b (;[LI)
Fout TP T a)  Vzmn © T

Normalizing and multiplying both sides by bz l'?' » one gets

- halz
3 =
R 2 2 2 b 3 Z2{t-7) _

D JEE N ﬁ{l‘.—‘r]

This shows that the impulse response of a cable having decibel
attenuation varying as the square root of frequency is a universal function.
The same curve may be used to represent the response at all points along
the cable provided the abscissa {amplitudelzsialr: is divided by b%12 and
the ordinate {time) scale is multiplied by b“1". The function isplotted in
Fig. 1,

It ig instructive to inquire into the role played by the (assumed to be
lossless) dielectric in affecting the conductor losses and thereby the rise
time of the cable. With the assumption D > dcf nomograph of Sec. VII,
CC222), the equation for a may be written

O
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u}-i." II‘L{: 1
N W d
or
f
na¥? in = En d,
ne

The guantity I'n d can be found fram

zZ = fi‘L o ot Dfd
0 €4 &n ;

where Hg ® permeability of dielectric,

€ 4 = permittivity of dielectric.

Rearranging,
€d
lnd-ZﬂED - iIn I
- n
d
Thus,
L €
- c a d
fna =4fn T En.r!'.u -_Ii.- - In D,

Therefore, in the situation in which €3 18 the only variable, one has

TrEu
_d.E - d E-d
a *.l'ped

Remembering that a is the attenuation per length of cable, one sces that to
transmit a pulse over a given distance where Z_, the outer diameter D, and
the conductor material are fixed, dielectrics Dfﬂthﬂ' minimum 'Ed should be
used to obtain the shortet rise lime.

Note that this result may not apply to other situations such as when
4 given delay of minimum rise time is to be built into a certain volume,

The result that the rise time of a cable varies as the length squared
miay also be obtained by using the principle of time-bandwidth invariance,
which is that compressing a time function by a certain factor expands ifs
Spectrum in frequency and reduces it in amplitude by the same factor, Or,
in symbola,

+Man}r other useful relations are contained in the Hewlett- Packard Journal,
Vol. 7 No. 3, Nov. 1955, and also ina '"Table of Important Transformas,
igaued by Hewlett- Packard,
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for f{t) = £ (kt) C
1

then AL =

Suppose that one has a device with a transfer lunction that can be
expressed as

E
E;:it-- Iw]] = exp [nmn] =F (w) .
n

If one cascades m such devices, the over-all transfer function is

E

Eﬂ- {w]m = exp (-mw") = exp [-[ﬂ‘ll"'fnm]'n] = F'{,l'nl"r"m] .
in

In this case, it is seen that K = l,-'lml‘fn. and thus the Hime-response

function is stretched in time by the factor m1/%, Some common vales of

nare: {a) n = 0.5 for the cable case discussed above; (b) n = 1 for cables

in which attenuvation is owing mainly to the dielectric; (¢) n = 2 for

"Gaussian frequency response’ amplifliers. Case (c) includes many

distributed amplifiers {e.g., H, P. 460A, 460B) and is approximated by

transfer functions of a single RC or L/R time constant. The relation between

rise time and n, where m is the number of identical cascaded units, is (
summarized as follows

Value of n Rise time varies as
0.5 e
1 4 m
L
2 m*
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